# **BENEFITS FROM PHOTOVOLTAICS IN INDIA**

### How to profit from photovoltaics



Dr. Thomas Schlegl

Fraunhofer Institute for Solar Energy Systems ISE

3<sup>rd</sup> Fraunhofer Innovation and Technology Platform (FIT) Bangalore, 22<sup>nd</sup> November 2014

www.ise.fraunhofer.de



### Photovoltaic is competitive to other energy sources Levelized cost of electricity (LCOE), projections for Germany until 2030





### Dependence on site and market conditions LCOE for renewable energy sources 2013





## Projections of a strong and long-term market growth PV market development, GW per year

- PV Market is growing rapidly, and globally
- Transitioning from government subsidies to market based asset financing



### **Excellent business opportunities for various stakeholders**



### **Requirements of stakeholders**

- Manufacturers: competitiveness
- Banks: want their money back
- Investors: maximal ROI (yield), minimal risk
- Insurances: minimal risk
- System operators: high performance ratio and low maintenance effort
- Consumers: low costs for electricity at stable supply
- Grid operators: easy integration
- State: positive job effects





# Understanding the requirements of stakeholders leads to following requirements

- High quality at competitive costs
- Highly efficient and reliable
- Long-term stable with minimal degradation
- State-of-the-art design
- Optimal system integration and operation
- Adapted grid expansion planning





# Support in c-Si technology development and transfer Fraunhofer ISE offerings for manufacturers, I

- Technical and commercial due dilligence studies
  - Roadmapping for future technology development
  - Identification of locally available supply chain and customers
  - CoO analysis and risk assessment for different technology options
  - Efficiency and performance ratio potential
  - Profitability analysis
- Specification and set up of local production facilities
  - Total facility layout
  - Support during procurement of process
  - Sustainability and environmental impact analysis



# Support in c-Si technology development and transfer Fraunhofer ISE offerings for manufacturers, II

Fraunhofer

BERGEN

- Benchmark analysis
  - Auditing of existing or new production lines
  - Identification of efficiency limitations
  - Recommendations for evolutionary technology upgrades
- R&D collaboration for joint developments
  - Adapted to customer and local market needs
  - Transfer of processes and support in further optimisation
- Education and scientific exchange
  - Theoretical and practical training of employees
  - Supporting local R&D and academic infrastructure













### Certification according to Quality Standards TestLab PV Modules



IEC / UL Certification

- Steady State Solar Simulator
- Pulsed Solar Simulator (AAA)
- NOCT Test Stand
- Mechanical Load Test Stand
- Hail Test Stand
- Several Climate Chambers
- Electroluminescence Camera
- Infrared Camera
- Electrical Safety Test Stand
- Module Breakage Test Stand
- Reverse Current Test Stand





### Quality Tests Beyond Standard Advanced Tests

- Extended mechanical load test
- Extended hail test
- Salt mist test for maritime climate
- Damp-heat chamber with integrated UV source
- Climate chamber with steady state solar simulator
- Enhanced UV test (90-120 kWh/m<sup>2</sup>)
- Potential induced degradation test













# Bankability and Quality Control Comparative Testing





Example:

Comparison of 14 module types of nine manufacturers

- 400 Thermal Cycles
- Damp Heat 2000 hours







### **Quality Assurance for Utility Scale PV Plants**

| Planning and Design                                                                                                                        | Implementation                                                                                                | Commissioning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Operation                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Solar resource and yield assessment</li> <li>Manufacturer quality benchmarking</li> <li>Module power and energy rating</li> </ul> | <ul> <li>Module performance check</li> <li>Module reliability check</li> <li>Module material check</li> </ul> | <ul> <li>Final acceptance test</li> <li>Initial performance<br/>and safety verification</li> <li>PV plant certification</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>Continuous long-term performance reporting</li> <li>Failure analyzes and reporting</li> <li>Optimization and re-powering</li> </ul> |
|                                                                                                                                            |                                                                                                               | Margarel 2.0.0         0           Margarel 2.0.0         0 | 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013                                                                                  |



© Fraunhofer ISE

### Investment in PV – cost saving options for electricity supply Hybrid energy system for German industrial companies

#### Motivation:

Increasing electricity costs while decreasing costs for renewable energy technologies

Increased planning reliability of costs for electricity

In regions with power shortages: improved electricity supply





# Modelling the regional market development, as basis for optimal grid expansion planning Example Germany

- LCOE will depend on region
- Investments and LCOE depending on investor type





# **Energy system optimization**

### **Regional and national analysis of electricity systems**

### Long-term Scenarios



### **Location Planning**



### 15

© Fraunhofer ISE

### **Technology Portfolios**



### **Energy Flows**





# **Optimization model for grid expansion planning**





# SUMMARY

- Photovoltaics is already competitive, a strong and long-term market growth is projected
- Many business opportunities for various stakeholders as manufacturers, banks, investors, insurances, consumers system operators, grid operators
- Fraunhofer ISE offers support for market success within individual objectives

### We are happy to support you!



# Thank you for your kind attention!



### Fraunhofer Institute for Solar Energy Systems ISE

Dr. Thomas Schlegl

Thomas.Schlegl@ise.fraunhofer.de

www.ise.fraunhofer.de



18

© Fraunhofer ISE