Thermo-catalytic reforming: Sustainable efficient energy from bio and plastics waste

22nd November 2014, Bangalore

Thorsten Hornung
Global sustainability challenges require efficient solutions

Global municipal solid waste growing to 2.6 bn. tons per year by 2025?

+5°C global warming by 2100 without turnaround on greenhouse gas emissions?
A flexible, integrated waste-to-energy solution ...

- Agricultural residue
- Municipal biowaste
- Industrial biowaste
- Plastics waste
 ... or animal grease, glycerol, other fats, oils and waxes

Thermo-Catalytic Reforming (TCR®)

- Syngas
- Oil
- Biochar

Bio-Activated Fuel option (BAF)

Power
Heat
Fuels
Fertilizer
Chemical precursors
Thermo-Catalytic Reforming (TCR®) of waste biomass
Thermo-Catalytic Reforming (TCR®) – process overview

1. Thermal Drying
2. Thermal Decomposition
3. Catalytic Reforming
4. Product Treatment
Further extending the feedstock range – BAF reactor option for plastics waste, oils & fats
High feedstock flexibility

- Animal manure
- Oil & fruit pomace
- Plantation residues
- Straw, husk
- Wood residue

Suitable for most solid biomass
- Food waste
- Organic waste
- Municipal solid waste
- Roadside & park clippings
- Sewage sludge

Up to 10% plastics in biomass
- Bagasse
- Biogas digestate
- Paper sludge
- Bioethanol residual

Mixed feedstock
- Over 50% moisture content
- Agricultural residue
- Municipal biowaste
- Industrial biowaste

© Fraunhofer UMSICHT
Superior product quality – many applications

Oil

- No tar or wax
- High heating value (33-36 MJ/kg)**
- Low acidity (TAN 2 - 5 mg KOH/g)**
- Blending with regular fuels
- Suitable for motor applications

Engine quality oil

Syngas

- Tar and dust free
- Free of aromatics
- Up to 50% hydrogen content
- Suitable for motor applications
- Suitable for synthesis processes

Engine quality syngas

Biochar

- Dry, storable and transportable
- Fixed carbon content at hard coal level
- Increased ash concentration
- Suitable as solid bio fuel
- Suitable for soil improvement applications

Biochar in hard coal quality

Folie 8

© Fraunhofer UMSICHT
Illustrative Scenario – Value from oil press residue

- **2.250 t/year** 14% humidity

- **Straw**

- **TCR® Reactor**

- **Approx. 180 t/year** For plant heating

- **928 t/year**

- **164 t/year**

- **522 t/year**

- **Chemical Upgrading Plant**

- **300 kW electric** (peak)

- **Biooil**

- **Biochar**

- **Syngas**

Biooil is blended with 10-20% of vegetable oil, biodiesel or regular diesel

Plant incl. dryer is heated using heat from CHP plant and combustion of biochar or external fuel

In addition process water is produced (approx. 20% of the feedstock)
Illustrative Scenario – Processing plastics & biomass waste

7600 t/year
Digestate
75% humidity

3400 t/year
Plastics waste

TCR® Plant

Syngas
1600 t/year

CHP Plant
1800 kW electric (effective)

Aliphatic fuel
2800 t/year

Biochar
430 t/year

Approx. 250 t/year
For plant heating

* Biooil is blended with 10-20% of vegetable oil, biodiesel or regular diesel
** Plant incl. dryer is heated using heat from CHP plant and combustion of biochar or external fuel
*** In addition process water is produced (approx. 20% of the feedstock)
Our technologies are ready for application …

Pilot plants at Fraunhofer UMSICHT …

... and commercial plants at design stage.
Key advantages of TCR® technology

<table>
<thead>
<tr>
<th>Other waste-to-energy technology</th>
<th>TCR® technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limited feedstock flexibility</td>
<td>High feedstock flexibility</td>
</tr>
<tr>
<td>Limited to niche markets</td>
<td>Product diversification</td>
</tr>
<tr>
<td>Complex product treatment</td>
<td>Superior product quality – simple design</td>
</tr>
<tr>
<td>Variable energy yields</td>
<td>Unlocks > 70% of feedstock energy</td>
</tr>
<tr>
<td>Large capital requirements</td>
<td>Economic solution at small scale</td>
</tr>
<tr>
<td></td>
<td>Major development potential</td>
</tr>
</tbody>
</table>
Fraunhofer UMSICHT spin-off to commercialize TCR® technology

- Company offering TCR® technology equipment
- Collaborating with Fraunhofer UMSICHT and other partners on demonstration projects

Energy and fuels from biomass and plastics waste through sustainable and efficient thermo-chemical conversion solutions
Interested?
Please contact us.

Dipl.-Ing. Thorsten Hornung, MBA
Fraunhofer UMSICHT
An der Maxhütte 1
92237 Sulzbach-Rosenberg

Phone: +49 172 697 1181
Email: thorsten.hornung@susteen.de
Internet: http://www.umsicht-suro.fraunhofer.de
Illustrative Scenario – Value from oil press residue

- **Oil press residue**

 - 2.250 t/year
 - 10% humidity

- **Olive pomace**

 - 300 kg/h
 - TCR® Reactor

- **Syngas**
 - 630 t/year
 - (15 MJ/kg)

- **Biochar**
 - 410 t/year
 - (36 MJ/kg)

- **Biooil***
 - 630 t/year
 - (26 MJ/kg)

- **Approx. 180 t/year**
 - For plant heating

- **Plant incl. dryer**
 - Heated using heat from CHP plant and combustion of biochar or external fuel

- **TCR® Reactor**
 - CHP Plant
 - 280 kW electric (effective)

- **Biooil** is blended with 10-20% of vegetable oil, biodiesel or regular diesel

- **Plant incl. dryer** is heated using heat from CHP plant and combustion of biochar or external fuel

- **In addition process water is produced (approx. 20% of the feedstock)**
Illustrative Application Scenario – Business Case

TCR® Plant

<table>
<thead>
<tr>
<th>Expense</th>
<th>mn. INR/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feedstock</td>
<td>1.78</td>
</tr>
<tr>
<td>Biodiesel</td>
<td>4.27</td>
</tr>
<tr>
<td>Labor</td>
<td>0.47</td>
</tr>
<tr>
<td>Maintenance</td>
<td>3.26</td>
</tr>
<tr>
<td>Other</td>
<td>0.62</td>
</tr>
<tr>
<td>Total</td>
<td>10.4</td>
</tr>
</tbody>
</table>

Revenue

<table>
<thead>
<tr>
<th>Revenue</th>
<th>mn. INR/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power sales</td>
<td>24.3</td>
</tr>
<tr>
<td>Heat</td>
<td>3.57</td>
</tr>
<tr>
<td>Biochar</td>
<td>2.09</td>
</tr>
<tr>
<td>Total</td>
<td>30.0</td>
</tr>
</tbody>
</table>

Result

<table>
<thead>
<tr>
<th>Result</th>
<th>1.000 EUR/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBITDA</td>
<td>19.6</td>
</tr>
<tr>
<td>Depreciation</td>
<td>3.26</td>
</tr>
<tr>
<td>EBIT</td>
<td>16.3</td>
</tr>
<tr>
<td>IRR</td>
<td>29%</td>
</tr>
</tbody>
</table>

- Illustrative business case based on experimental data and estimates
- Annual averages over 20 years project duration
- Loan financing not considered

- Power price: 9300 INR/MWh
- Heat price: 2300 INR/MWh (50% utilization)
- Biochar price: 7800 INR/t
Illustrative Scenario – Value from biogas digestate

7600 t/year
75% humidity

Digestate

700 kW thermal
500 kW imported from biogas plant

Biomass Dryer

2.250 t/year
15% humidity

Digestate, dry

300 kg/h

TCR® Reactor

Approx. 250 t/year
For plant heating

880 t/year

Syngas

180 kW electric
(effective)

170 t/year

Biooil*

Biochar

430 t/year

* Biooil is blended with 10-20% of vegetable oil, biodiesel or regular diesel
** Plant incl. dryer is heated using heat from CHP plant and combustion of biochar or external fuel
*** In addition process water is produced (approx. 20% of the feedstock)